本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
基于监督的基于学习的形态攻击检测(MAD)解决方案在处理已知变形技术和已知数据源的攻击方面取得了杰出的成功。但是,鉴于变形攻击的变化,由于现有MAD数据集的多样性和数量不足,监督的疯狂解决方案的性能大大下降。为了解决这一问题,我们通过利用现有的大规模面部识别(FR)数据集和卷积自动编码器的无监督性质,通过自定进程异常检测(SPL-MAD)提出了一个完全无监督的疯狂解决方案。使用一般的FR数据集,这些数据集可能包含无意识的和未标记的操纵样品来训练自动编码器,可以导致攻击和真正的样本的各种重建行为。我们从经验上分析了这种行为,以提供扎实的理论基础来设计我们的无监督的疯狂解决方案。这也导致建议以完全无监督的方式整合我们改良的修改后的自定进度学习范式,以增强善意和攻击样本之间的重建误差可分离性。我们对各种MAD评估数据集的实验结果表明,所提出的无监督的SPL-MAD解决方案优于广泛监督的MAD解决方案的整体性能,并为未知攻击提供了更高的概括性。
translated by 谷歌翻译
这项工作总结了2022年2022年国际生物识别联合会议(IJCB 2022)的IJCB被遮挡的面部识别竞赛(IJCB-OCFR-2022)。OCFR-2022从学术界吸引了总共3支参与的团队。最终,提交了六个有效的意见书,然后由组织者评估。在严重的面部阻塞面前,举行了竞争是为了应对面部识别的挑战。参与者可以自由使用任何培训数据,并且通过使用众所周知的数据集构成面部图像的部分来构建测试数据。提交的解决方案提出了创新,并以所考虑的基线表现出色。这项竞争的主要输出是具有挑战性,现实,多样化且公开可用的遮挡面部识别基准,并具有明确的评估协议。
translated by 谷歌翻译
深度学习的面部识别模型通过利用具有较高计算成本的完整精确浮点网络来遵循深神经网络的共同趋势。由于完整的模型所需的大量内存,将这些网络部署在受计算需求约束的用例中通常是不可行的。以前的紧凑型面部识别方法提议设计特殊的紧凑型建筑并使用真实的培训数据从头开始训练它们,由于隐私问题,在现实世界中可能无法使用。我们在这项工作中介绍了基于低位精度格式模型量化的定量解决方案。 Quantface降低了现有面部识别模型所需的计算成本,而无需设计特定的体系结构或访问真实的培训数据。 Quantface将隐私友好的合成面数据引入量化过程中,以减轻潜在的隐私问题和与真实培训数据有关的问题。通过对七个基准和四个网络体系结构进行的广泛评估实验,我们证明了Quantface可以成功地将模型大小降低到5倍,同时在很大程度上维护完整模型的验证性能而无需访问真实的培训数据集。
translated by 谷歌翻译
文献中提出的最新深层识别模型利用了大规模的公共数据集(例如MS-CELEB-1M和VGGFACE2)来培训非常深的神经网络,从而在主流基准上实现了最先进的表现。最近,由于可靠的隐私和道德问题,许多这些数据集(例如MS-CELEB-1M和VGGFACE2)被撤回。这激发了这项工作提出和调查使用隐私友好型合成生成的面部数据集来训练面部识别模型的可行性。为此,我们利用类别条件生成的对抗网络来生成类标记的合成面部图像,即sface。为了解决使用此类数据训练面部识别模型的隐私方面,我们提供了有关合成数据集与用于训练生成模型的原始真实数据集之间的身份关系的广泛评估实验。我们报告的评估证明,将真实数据集与合成数据集中的同一类标签相关联是不可能的。我们还建议使用三种不同的学习策略,多级分类,无标签的知识转移以及多级分类和知识转移的联合学习,对我们的隐私友好数据集进行识别。报告的五个真实面部基准的评估结果表明,隐私友好的合成数据集具有很高的潜力,可用于训练面部识别模型,例如,使用多级分类和99.13在LFW上实现91.87 \%的验证精度。 \%使用联合学习策略。
translated by 谷歌翻译
面部图像的质量显着影响底层识别算法的性能。面部图像质量评估(FIQA)估计捕获的图像的效用在实现可靠和准确的识别性能方面。在这项工作中,我们提出了一种新的学习范式,可以在培训过程中学习内部网络观察。基于此,我们所提出的CR-FiQA使用该范例来通过预测其相对分类性来估计样品的面部图像质量。基于关于其类中心和最近的负类中心的角度空间中的训练样本特征表示来测量该分类性。我们通过实验说明了面部图像质量与样本相对分类性之间的相关性。由于此类属性仅为培训数据集可观察到,因此我们建议从培训数据集中学习此属性,并利用它来预测看不见样品的质量措施。该培训同时执行,同时通过用于面部识别模型训练的角度裕度罚款的软墨损失来优化类中心。通过对八个基准和四个面部识别模型的广泛评估实验,我们展示了我们提出的CR-FiQA在最先进(SOTA)FIQ算法上的优越性。
translated by 谷歌翻译
全球Covid-19大流行的出现会给生物识别技术带来新的挑战。不仅是非接触式生物识别选项变得更加重要,而且最近也遇到了频繁的面具的面对面识别。这些掩模会影响前面识别系统的性能,因为它们隐藏了重要的身份信息。在本文中,我们提出了一种掩模不变的面部识别解决方案(MaskInv),其利用训练范例内的模板级知识蒸馏,其旨在产生类似于相同身份的非掩盖面的掩模面的嵌入面。除了蒸馏知识外,学生网络还通过基于边缘的身份分类损失,弹性面,使用遮蔽和非蒙面面的额外指导。在两个真正蒙面面部数据库和具有合成面具的五个主流数据库的逐步消融研究中,我们证明了我们的maskinV方法的合理化。我们所提出的解决方案优于先前的最先进(SOTA)在最近的MFRC-21挑战中的学术解决方案,屏蔽和屏蔽VS非屏蔽,并且还优于MFR2数据集上的先前解决方案。此外,我们证明所提出的模型仍然可以在缺陷的面上表现良好,只有在验证性能下的少量损失。代码,培训的模型以及合成屏蔽数据的评估协议是公开的:https://github.com/fdbtrs/masked-face-recognition-kd。
translated by 谷歌翻译
戴着面具已被证明是防止SARS-COV-2冠状病毒传播最有效的方法之一。然而,佩戴掩模对不同的面部识别任务构成挑战,并提高了关于掩蔽面部呈现检测(焊盘)的性能的担忧。面向面膜面板面临的主要问题是错误分类的Bona Fide掩盖面,错误分类的部分攻击(由真实面具覆盖)。这项工作通过提出考虑部分攻击标签来监督垫模型培训的方法,以及区域加权推理,通过改变对不同面部区域的关注来进一步改善垫性能的方法来解决这些问题。我们所提出的方法与特定网络架构没有直接链接,因此可以直接纳入任何常见或定制设计的网络。在我们的工作中,选择了两个神经网络(DeepPixbis和MixfaceNet)作为骨干。在协作实际掩模攻击(CRMA)数据库上证明了实验。我们所提出的方法通过减少面向遮阳面时的缺点来优于CRMA数据库中的建立的焊盘方法。此外,我们提出了一个详细的逐步消融研究,指出了所提出的概念对整体垫性能的个人和联合益处。
translated by 谷歌翻译
SARS-COV-2向科学界提出了直接和间接的挑战。从大量国家的强制使用面部面具的强制使用最突出的间接挑战之一。面部识别方法在蒙版和未掩蔽的个体上努力执行具有类似准确性的身份验证。已经表明,这些方法的性能在面部掩模存在下显着下降,特别是如果参考图像是未被掩蔽的。我们提出了FocusFace,一种使用对比学习的多任务架构能够准确地执行蒙面的面部识别。该建议的架构被设计为从头开始训练或者在最先进的面部识别方法上工作,而不牺牲传统的面部识别任务中现有模型的能力。我们还探讨了设计对比学习模块的不同方法。结果以屏蔽掩蔽(M-M)和未掩蔽掩蔽(U-M)面验证性能提出。对于这两个设置,结果都与已发布的方法相提并论,但对于M-M而言,该方法能够优于与其比较的所有解决方案。我们进一步表明,当在现有方法顶部使用我们的方法时,培训计算成本在保持类似的表现时显着降低。在Github上提供了实施和培训的型号。
translated by 谷歌翻译
学习歧视性面部特征在建立高性能面部识别模型方面发挥着重要作用。最近的最先进的面部识别解决方案,提出了一种在常用的分类损失函数,Softmax损失中纳入固定的惩罚率,通过最大限度地减少级别的变化来增加面部识别模型的辨别力并最大化级别的帧间变化。边缘惩罚Softmax损失,如arcFace和Cosface,假设可以使用固定的惩罚余量同样地学习不同身份之间的测地距。然而,这种学习目标对于具有不一致的间帧内变化的真实数据并不是现实的,这可能限制了面部识别模型的判别和概括性。在本文中,我们通过提出弹性罚款损失(弹性面)来放松固定的罚款边缘约束,这允许在推动阶级可分离性中灵活性。主要思想是利用从每个训练迭代中的正常分布中汲取的随机保证金值。这旨在提供决策边界机会,以提取和缩回,以允许灵活的类别可分离学习的空间。我们展示了在大量主流基准上使用相同的几何变换,展示了我们的弹性面损失和COSFace损失的优势。从更广泛的角度来看,我们的弹性面在九个主流基准中提出了最先进的面部识别性能。
translated by 谷歌翻译